

SOLUTIONS

WITH

A NSWER KEY

ANTS-FT \# 21

DROPPER ENGINEERING

(PHYSCIS, CHEMISTRY \& MATHS)

TARGET : JEE (MAIN + ADVANCED) - 2020

Exam. Date : 21-06-2020

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

FOR A BETTER TOMO

ANSWER KEYS FOR ANTS-FT \# 21 (TARGET - JEE-MAIN-2020)

DATE : 21-06-2020

ANSWERS [PHYSICS]

1.A	2.A	3.A	4.B	5.D	6.D	7.D	8.B	9.B	10.A
11.A	12. B	13. C	14.A	15.D	16.A	17.C	18.D	19.B	20.C
21.(12)	22. (84)	$23 .(4)$	24. (7)	25. (20)					

ANSWERS [CHEMISTRY]

26. B	27. A	28. D	29. A	30. C	31. A	32. B	33. D	34. D	35. B
36. C	37. A	38. B	39. C	40. B	41. D	42. A	43. C	44. B	45. A
46. $(\mathbf{1 2 . 0})$	47. $(\mathbf{8 0})$		48. (23.7)	49. (1)	50. (0.51)				

ANSWERS [MATHS]

51. D
52. B
53. C
54. B
55. A
56. A
57. D
58. B
59. C
60. C
61. C
62. D
63. B
64. B
65. C
66. D
67. C
68. C
69. C
70. D
71. (1000)
72. (0.167)
73. (151)
74. (0.75)
75. (4)

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

1. In the shown system, $\mathrm{m}_{1}>\mathrm{m}_{2}$. Thread QR is holding the system. If this thread is cut, then just after cutting.

(A) acceleration of mass m_{1} is zero and that of m_{2} is directed upward
(B) acceleration of mass m_{2} is zero and that of m_{1} is directed downward
(C) acceleration of both the blocks will be same
(D) acceleration of system is given by $k\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right)$ g, constant.

Solution :

On cutting the string $Q R$, the resultant force on m_{1} remains zero because its weight $m_{1} g$ is balanced by the tension in the spring but on block m_{2} a resultant upward force $\left(m_{1}-m_{2}\right) g$ is developed. Thus block m_{1} will have no resultant acceleration whereas m_{2} does have an upward acceleration given by $\frac{\left(m_{1}-m_{2}\right) g}{m_{2}}$.
Hence the answer is (A).
2. Two balls of mass $\mathrm{M}=9 \mathrm{~g}$ and $\mathrm{m}=3 \mathrm{~g}$ are attached by massless threads AO and OB . The length AB is 1 m . They are set in rotational motion in a horizontal plane about a vertical axis at O with constant angular velocity ω. The ratio of length AO and OB $\left(\frac{A O}{O B}\right)$ for which the tension in threads are same will be

(A) $\frac{1}{3}$
(B) 3
(C) $\frac{2}{3}$
(D) $\frac{3}{2}$

Solution :

$$
\begin{aligned}
& T_{1}=T_{2} \\
& \Rightarrow M \omega^{2} x=m \omega^{2}(I-x) \\
& \quad x=\frac{m l}{M+m}
\end{aligned}
$$

$$
\frac{A O}{O B}=\frac{x}{1-x}=\frac{m}{M}=\frac{3}{9}=\frac{1}{3}
$$

Hence the answer is (A).

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

3. A constant power is supplied to a rotating disc. Angular velocity (ω) of disc varies with number of rotations (n) made by the disc as
(A) $\omega \propto n^{1 / 3}$
(B) $\omega \propto n^{3 / 2}$
(C) $\omega \propto n^{2 / 3}$
(D) $\omega \propto n^{2}$

Solution :

Since, $P=\tau \omega=$ constant $\Rightarrow \alpha \omega=c$ (constant)

$$
\begin{aligned}
& \Rightarrow \quad \omega^{2} \frac{\mathrm{~d} \omega}{\mathrm{~d} \theta}=\mathrm{c} \quad \Rightarrow \quad \omega \propto \theta^{1 / 3} \\
& \therefore \quad \omega \propto n^{1 / 3}(\text { as } \theta \propto n)
\end{aligned}
$$

Hence the answer is (A).
4. A ring of mass m is placed on a very rough horizontal surface with its plane vertical. A horizontal impulse J is applied on the ring of mass m along a line passing through its centre. The linear velocity of the centre of the ring once it starts pure rolling is
(A) $\frac{\mathrm{J}}{\mathrm{m}}$
(B) $\frac{\mathrm{J}}{2 \mathrm{~m}}$
(C) $\frac{2 \mathrm{~J}}{\mathrm{~m}}$
(D) $\frac{\mathrm{J}}{3 \mathrm{~m}}$

Solution :

Let v be the velocity of centre of mass of ring just after the impulse is applied and v is its velocity in pure rolling.
$v_{0}=\frac{\mathrm{J}}{\mathrm{m}}$

Conserving angular momentum about point of contact with ground

$$
m v_{0} r=m v r+I_{c m} \omega
$$

$\Rightarrow \quad v=\frac{v_{0}}{2}=\frac{\mathrm{J}}{2 \mathrm{~m}}$

Hence the answer is (B).

5. A spring-block system is kept on a smooth wedge of inclination θ as shown in figure. The mass of the block is m , spring constant of the spring is k . The wedge is moving with constant acceleration a. The time period for small oscillation of block is (assuming at all times mass m remains in contact with the wedge)

(A) $2 \pi \sqrt{\frac{m}{k \sin \theta}}$
(B) $2 \pi \sqrt{\frac{m}{k \sin ^{2} \theta}}$
(C) $2 \pi \sqrt{\frac{\mathrm{~m} \sin \theta}{\mathrm{k}}}$
(D) $2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}$

Solution :

Time period of spring block system does not depend on the effective g

Hence the answer is (D).

6. A particle of mass 2 kg moves in simple harmonic motion and its potential energy U varies with position x as shown. The period of oscillation of the particle is (in second)

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

(A) $\frac{2 \pi}{5}$
(B) $\frac{2 \sqrt{2} \pi}{5}$
(C) $\frac{\sqrt{2} \pi}{5}$
(D) $\frac{4 \pi}{5}$

Solution :

$\omega=\frac{5}{2} \mathrm{radian} / \mathrm{sec}, \mathrm{T}=\frac{2 \pi}{\omega}=\frac{4 \pi}{5}$
Hence the answer is (D).
7. A long string with a charge of λ per unit length passes through an imaginary cube of edge a. The maximum flux of the electric field through the cube will be
(A) $\frac{2 a \lambda}{\varepsilon_{0}}$
(B) $\frac{\sqrt{2} \lambda a}{\varepsilon_{0}}$
(C) $\frac{6 \lambda a}{\varepsilon_{0}}$
(D) $\frac{\sqrt{3} \lambda a}{\varepsilon_{0}}$

Solution :

The maximum length of the string which can fit into the cube is $\sqrt{3} a$, equal to its body diagonal. The maximum charge inside the cube is , and hence the maximum flux through the cube is $\frac{\sqrt{3} \lambda a}{\varepsilon_{0}}$

Hence the answer is (D).

8. In the given circuit, find the heat generated if switch S is closed.

(A) $\frac{3}{2} \mathrm{CV}^{2}$
(B) $2 \mathrm{CV}^{2}$
(C) CV^{2}
(D) $\frac{1}{3} \mathrm{CV}^{2}$

Solution :

$C_{\text {eq }}=C$
So, work done by battery $=C V^{2}$
Heat generated $=\frac{1}{2} \mathrm{CV}^{2}$
Hence the answer is (B).
9. If the flux of magnetic induction through a coil of resistance R and having n turns changes from ϕ_{1} to ϕ_{2}, then the magnitude of the charge that passes through the coil is
(A) $\frac{\left(\varphi_{2}-\varphi_{1}\right)}{R}$
(B) $\frac{\mathrm{n}\left(\varphi_{2}-\varphi_{1}\right)}{\mathrm{R}}$
(C) $\frac{\left(\varphi_{2}-\varphi_{1}\right)}{n R}$
(D) $\frac{n R}{\left(\varphi_{2}-\varphi_{1}\right)}$

Solution :

Induced is emf is $|\mathrm{e}|=\mathrm{n} \frac{\Delta \varphi}{\Delta \mathrm{t}}$.
Hence the answer is (B).

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

10. Position-time curve of a body moving along a straight line is shown in figure. The velocity-time curve for the motion of the particle will be
(A)

(B)

(C)

(D)

Solution :

This is the situation similar to elastic collision of ball impinging on floor and bouncing back.
Hence the answer is (A).
11. A 4.5 cm -metallic sphere (work function $=1.1 \mathrm{eV}$) is exposed to intense light of wavelength 400 nm . After some time, it is observed that photoemission stops. The final charge on the sphere is (assume that the value of hc $=12400 \mathrm{eV}-\AA$)
(A) $10^{-11} \mathrm{C}$
(B) $1.55 \times 10^{-11} \mathrm{C}$
(C) $0.55 \times 10^{-11} \mathrm{C}$
(D) $2.1 \times 10^{-11} \mathrm{C}$

Solution :

The capacitance of the sphere, $C=4 \pi \varepsilon_{0} r$
$=\frac{1}{9} \times 10^{-9} \times \frac{4.5}{100}=0.5 \times 10^{-11} \mathrm{~F}$
After exposure to the light photo emission stops when the final potential of the sphere equals the stopping potential:
$V_{\text {stop }}=\frac{12400}{4000}-1.1=2 \mathrm{~V}$
The charge on the sphere $=C V_{\text {stop }}=10^{-11} \mathrm{C}$
Hence the answer is (A).
12. A cylindrical vessel contains a liquid of density ρ upto a height h. The liquid is closed by a piston of mass m and area of cross-section A. There is a small hole at the bottom of the vessel. The speed v with which the liquid comes out of the hole is: (neglect presence of atmosphere)

(A) $\sqrt{2 g h}$
(B) $\sqrt{2\left(g h+\frac{m g}{\rho A}\right)}$
(C) $\sqrt{2\left(g h+\frac{m g}{A}\right)}$
(D) $\sqrt{2 g h+\frac{m g}{A}}$

Solution :

Applying Bernoulli's theorem at 1 and 2

$$
\begin{aligned}
& \rho g h+\frac{m g}{A}=\frac{1}{2} \rho v^{2} \\
& \quad \text { or } \\
& \quad v=\sqrt{2\left(g h+\frac{m g}{\rho A}\right)}
\end{aligned}
$$

Hence the answer is (B).

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

13. The radii of two soap bubbles are R_{1} and R_{2} respectively. The ratio of masses of air in them will be
(A) $\frac{R_{1}^{3}}{R_{2}^{3}}$
(B) $\frac{\mathrm{R}_{2}^{3}}{\mathrm{R}_{1}^{3}}$
(C) $\left(\frac{P+\frac{4 T}{R_{1}}}{P+\frac{4 T}{R_{2}}}\right) \frac{R_{1}^{3}}{R_{2}^{3}}$
(D) $\left(\frac{\mathrm{P}+\frac{4 \mathrm{~T}}{R_{2}}}{\mathrm{P}+\frac{4 T}{R_{1}}}\right) \frac{R_{2}^{3}}{\mathrm{R}_{1}^{3}}$

Solution :

Hence the answer is (C).
14. Shown in the figure is a conductor carrying a current I. The magnetic field intensity at the point O (common centre of all the three arcs) is (θ in radian)

O
(A) $\frac{5 \mu_{0} l \theta}{24 \pi r}$
(B) $\frac{\mu_{0} l \theta}{24 \pi r}$
(C) $\frac{11 \mu_{0} \mathrm{l} \theta}{24 \pi \mathrm{r}}$
(D) zero

Solution :

Since magnetic field at the centre of an arc is equal to
Hence, net $B==\frac{5 \mu_{0} l \theta}{24 \pi r}$
Hence the answer is (A).
15. With what minimum speed v must a small ball should be pushed inside a smooth vertical tube from a height h so that it may reach the top of the tube? Radius of the tube is R . (Assume radius of cross-section of tube is negligible in comparison to R)

(A) $\sqrt{g(2 R-h)}$
(B) $\frac{5}{2} R$
(C) $\sqrt{g(5 R-2 h)}$
(D) $\sqrt{2 g(2 R-h)}$

Solution :

For minimum v, velocity of ball at the topmost point will be zero.
By conservation of energy,

$$
v=\sqrt{2 g(2 R-h)}
$$

Hence the answer is (D).

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

16. If a man at the equator would weight (3/5)th of his weight, then the angular speed of the earth would be
(A) $\sqrt{\frac{2}{5}} \frac{\mathrm{~g}}{\mathrm{R}}$
(B) $\sqrt{\frac{g}{R}}$
(C) $\sqrt{\frac{R}{g}}$
(D) $\sqrt{\frac{2}{5} \frac{R}{g}}$

Solution :

$$
\begin{aligned}
& \text { At equator, } g^{\prime}=g-\omega^{2} R \\
& \Rightarrow \frac{3}{5} g=g-\omega^{2} R \\
& \Rightarrow \omega=\sqrt{\frac{2 g}{5 R}}
\end{aligned}
$$

Hence the answer is (A).
17. In the circuit shown, a meter bridge is in its balanced state. The meter bridge wire has a resistance 0.1 $o h m / \mathrm{cm}$. The value of unknown resistance X and the current drawn from the battery of negligible resistance is

(A) $6 \Omega, 5 \mathrm{amp}$
(B) $4 \Omega, 0.1 \mathrm{amp}$
(C) $4 \Omega, 1.0 \mathrm{amp}$
(D) $12 \Omega, 0.5 \mathrm{amp}$

Solution :

Hence the answer is (C).
18. An alternating voltage is given by voltage is given by $e=e_{1} \sin \omega t+e_{2} \cos \omega t$. Then, the root mean square value of
(A) $\sqrt{\mathrm{e}_{1}^{2}+\mathrm{e}_{2}^{2}}$
(B) $e_{1}+e_{2}$
(C) $\sqrt{\frac{e_{1} e_{2}}{2}}$
(D) $\sqrt{\frac{e_{1}^{2}+e_{2}^{2}}{2}}$

Solution :

$e=e_{0} \sin (\omega t+\varphi), e_{r m s}=\frac{e_{0}}{\sqrt{2}}=\sqrt{\frac{e_{1}^{2}+e_{2}^{2}}{2}}$
Hence the answer is (D).
19. A uniform current carrying ring of mass m and radius R is connected by a massless string as shown. A uniform magnetic field B_{0} exist in the region to keep the ring in horizontal position, then the current in the ring is (ℓ : length of string)

(A) $\frac{2 m g}{\mathrm{RB}_{0}}$
(B) $\frac{\mathrm{mg}}{\mathrm{RB}_{0} \pi}$
(C) $\frac{\mathrm{mg}}{3 \pi \mathrm{RB}_{0}}$
(D) $\frac{\mathrm{mg} \ell}{\pi \mathrm{R}^{2} \mathrm{~B}_{0}}$

Solution :

Hence the answer is (B).

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

20. If a particle is fired vertically upwards from the surface of earth and reaches a height of 6400 km , the initial velocity of the particle is (Assume $\mathrm{R}=6400 \mathrm{~km}$ and $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
(A) $4 \mathrm{~km} / \mathrm{sec}$
(B) $2 \mathrm{~km} / \mathrm{sec}$
(C) $8 \mathrm{~km} / \mathrm{sec}$
(D) $16 \mathrm{~km} / \mathrm{sec}$

Solution :

According to law of conservation of energy, $\frac{1}{2} m v^{2}=\frac{m g h}{1+\frac{h}{R}}$
$v^{2}=\frac{2 g h}{1+\frac{h}{R}}=\frac{2 \times 10 \times 6.4 \times 10^{6}}{1+\frac{R}{R}}=\frac{2 \times 10 \times 6.4 \times 10^{6}}{2} \quad \therefore v=\sqrt{64 \times 10^{6}}=8 \mathrm{~km} / \mathrm{sec}$
Hence the answer is (C).

Integer Type

21. A freshly prepared radioactive source half-life 2 hr emits radiation of intensity which is 64 times the permissible safe level. The minimum time after which it would be possible to work safely with this source is

Solution :

$$
\begin{aligned}
& \frac{\mathrm{N}}{\mathrm{~N}_{0}}=\left(\frac{1}{2}\right)^{\mathrm{t} / \mathrm{T}} \text { or } \frac{1}{64}=\left(\frac{1}{2}\right)^{t / T} \text { or }\left(\frac{1}{2}\right)^{6}=\left(\frac{1}{2}\right)^{\mathrm{t} / \mathrm{T}} \text { or } \frac{\mathrm{t}}{\mathrm{~T}}=6 \\
& \therefore t=6 T \text { or } t=6 \times 2=12
\end{aligned}
$$

Hence the answer is (12).

22. In Young's double slit experiment when sodium light of wavelength $5893 \AA$ is used, then 62 fringes are seen in the field of view. Instead of sodium light, if violet light of wavelength $4358 \AA$ is used then the number of fringes that will be seen in the field of view will be

Solution :

$$
n_{1} \frac{D \lambda_{1}}{d}=n_{2} \frac{D \lambda_{2}}{d} \Rightarrow n_{1} \lambda_{1}=n_{2} \lambda_{2} \Rightarrow n_{2}=\frac{n_{1} \lambda_{1}}{\lambda_{2}} \approx 84
$$

Hence the answer is (84).
23. A wire is of mass $(0.3 \pm 0.003) \mathrm{gm}$. The radius is $(0.5 \pm 0.005) \mathrm{mm}$ and length is $(6.0 \pm 0.06) \mathrm{cm}$ then $\%$ error in density is

Solution :

$\%$ error in density $=\left[2\left(\frac{0.005}{0.5}\right)+\frac{0.003}{0.3}+\frac{0.06}{6}\right] \times 100=4$

Hence the answer is (4).

24. Two trains, one coming towards and another going away from an observer both at $4 \mathrm{~m} / \mathrm{s}$ produce a whistle simultaneously of frequency 300 Hz . The number of beats heard by observer will be (velocity of sound $=340 \mathrm{~m} / \mathrm{s}$)
Solution :
Number of beats $=f\left(\frac{v}{v-v_{s}}\right)-f\left(\frac{v}{v+v_{s}}\right) \approx \frac{2 f v_{s}}{v^{2}}$
$=\frac{2 \times 300 \times 4}{340} \approx 7$
Hence the answer is (7).

ANTS－FT \＃ 21 （Engineering Dropper）（Solutions）－2019－20

25．What is the maximum value of the force F such that the block shown in the arrangement，does not move

Solution ：

$f=\mu R=\mu\left(W+F \sin 60^{\circ}\right)$
$F \cos 60^{\circ}=\mu\left(W+F \sin 60^{\circ}\right)$
Substituting $\mu=\frac{1}{2 \sqrt{3}}$ and $W=10 \sqrt{3}$ ，we get $F=20 \mathrm{~N}$

Hence the answer is（20）．

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

Dropper Batch
 CHEMISTRY

ANTS-FT-21
Engineering
26.

the name of the reaction is ?
(A) Cannizzaro's reaction
(B) Roseumund reduction
(C) Clemmensen reduction
(D) Aldol condensation

Solution :

Theory: name reaction of acid derivate
Hence the answer is (B).
27.

Product A is
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
(B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}=\mathrm{N}-\mathrm{OH}$
(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
(D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{NH}$

Solution :
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{N} \xrightarrow[-78^{\circ} \mathrm{C}]{\text { DIBAL-H }} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{NH} \xrightarrow{\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
Hence the answer is (A).
28. $\underset{\text { (alkene) }}{\mathrm{A}}+\mathrm{m}-\mathrm{CPBA} \xrightarrow{\mathrm{CH}_{2} \mathrm{Cl}_{2}} \mathrm{~B}+\mathrm{C}$

What is A and D ?
(A)

(B)

(C)

(D)

Solution :

Hence the answer is (D).
29.

(A)

(B)

(C)

(D)

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

Solution :

Hence the answer is (A).
30. Calculate $\Delta \mathrm{G}^{\circ}$ for the following reaction at 298 K :
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}^{\circ}=-282.84 \mathrm{KJ}$
Given: $\mathrm{S}_{\mathrm{CO}_{2}}^{0}=213.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{S}_{\mathrm{CO}(\mathrm{g})}^{0}=197.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{S}_{\mathrm{O}_{2}}^{0}=205.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
(A) $-86.6 \mathrm{JK}^{-1}$
(B) $+86.6 \mathrm{JK}^{-1}$
(C) -257.0 KJ
(D) +257.0 KJ

Solution :

$$
\begin{aligned}
& \Delta S^{\circ}=\Sigma S_{P}^{0}-\Sigma S_{R}^{0} \\
& =213.8-\left(197.9+\frac{1}{2} \times 205\right)=-86.6 \mathrm{JK}^{-1}
\end{aligned}
$$

Now, $\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}$
$=-282.84-298 \times\left(-86.6 \times 10^{-3}\right)$
$=-257.0 \mathrm{KJ}$
Hence the answer is (C).
31. What would be the percent hydrolysis of $0.10(\mathrm{M}) \mathrm{N}_{2} \mathrm{H}_{5} \mathrm{Cl}$, a salt containing the acid ion conjugate to hydrazine base ?
Given: Kb for $\mathrm{N}_{2} \mathrm{H}_{4}=9.6 \times 10^{-7}$
(A) 0.0323%
(B) 0.00323%
(C) 0.323%
(D) 3.23%

Solution :

$\mathrm{N}_{2} \mathrm{H}_{5}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{b}}}=\frac{1 \times 10^{-14}}{9.6 \times 10^{-7}}=1.04 \times 10^{-8}$
$\mathrm{h}=\sqrt{\frac{\mathrm{K}_{\mathrm{h}}}{\mathrm{c}}}=\sqrt{\frac{1.04 \times 10^{-8}}{0.10}}=3.225 \times 10^{-4}=3.23 \times 10^{-4}$
$\therefore \%$ hydrolysis $=0.0323 \%$
Hence the answer is (A).
32.

$\mathrm{A}+\mathrm{BrCH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5} \xrightarrow[\mathrm{Et}_{2} \mathrm{O}, \text { Heat }]{\mathrm{Zn}}(\mathrm{B}) \xrightarrow{\mathrm{NH}_{4} \mathrm{Cl}}$
(C) + Enantiomer $\xrightarrow[\text { (2) Heat }]{\text { (1) } \mathrm{H}_{3} \mathrm{O}^{+}}$(D)

What is (A) and (D)?
(A)

(B)

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

(C)

(D)

Solution :

$\mathrm{BrCH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{Zn} \xrightarrow[\text { Heat }]{\mathrm{Et}_{2} \mathrm{O}} \mathrm{BrZn}-\mathrm{CH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}$

(B)

Hence the answer is (B).
33. $\mathrm{A}+\mathrm{NaI} \mathrm{\xrightarrow[} \mathrm{Heat} \mathrm{]{ } \mathrm{Acetone} \mathrm{B}+\mathrm{IBr}+\mathrm{NaBr}, ~(t)}$

Carboxylic acid $\stackrel{\mathrm{KMnO}_{4}, \Delta}{\longleftrightarrow}$ B $\xrightarrow[\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}]{\mathrm{m} \text { - } \mathrm{O} \text { Enantiomer pair }}$
Identify A and B
(A) Meso - 2, 3 - Dibromobutane and cis-But - 2 - ene
(B) Meso - 2, 3 - Dibromobutane and trans - But - 2 - ene
(C) (2R, 3R) - 2, 3 - Dibromobutane and But - 1 - ene
(D) (2R, 3R) - 2, 3 - Dibromobutane and cis - But - 2 - ene

Solution :

Hence the answer is (D).

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

34. From the given graph below which is correct?

(A) In process $\mathrm{IV}, \Delta \mathrm{V}=0$, compression
(B) In process III, $\Delta \mathrm{E}=0$, expansion
(C) In process $\mathrm{I}, \Delta \mathrm{H}=0$, compression
(D) In process II, $\Delta \mathrm{E}=0$, expansion

Solution :

Process - I, Isobaric process
Process - II, Isothermal process
Process - III, Adiabatic process
Process - IV, Isochoric process
All are expansion process
Hence the answer is (D).
35. What is hybridisation of C_{2} in following ?
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
(A) sp^{3}
(B) sp^{2}
(C) dsp^{2}
(D) sp

Solution :

Hybridisation $=s p^{2}$

Hence the answer is (B).

36.

What is B ?
(A)

(B)

(C)

(D)

Solution :

Hence the answer is (C).

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

37. (A) $\xrightarrow[\mathrm{HCOOH}]{\mathrm{HCHO}}(B) \xrightarrow[\mathrm{CH}_{3} \mathrm{OH}]{\mathrm{H}_{2} \mathrm{O}_{2}}(C) \xrightarrow{\text { Heat }}(\mathrm{D})+(\mathrm{E})$

Compound (A) is primary amine and (B) is tertiary amine. What is major product ?
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
(B) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$
(C) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$
(D) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{3}$

Solution :

Hence the answer is (A).
38. The correct order of decreasing acid strength of following carboxylic acids is :

I

II

III
(A) $\mathrm{II}>$ III $>$ I
(B) I $>$ II $>$ III
(C) III $>$ II $>$ I
(D) III $>$ I $>$ II

Solution :

Due to ortho effect.
Hence the answer is (B).
39. The reaction, $\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{AgCl}(\mathrm{s}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{Ag}(\mathrm{s})$ occurs in the galvanic cell :
(A) $\mathrm{Ag} / \mathrm{AgCl}(\mathrm{s}) / \mathrm{KCl}$ (solution) $/ \mathrm{AgNO}_{3}$ (solution) $/ \mathrm{Ag}$
(B) $\mathrm{Pt} / \mathrm{H}_{2}(\mathrm{~g}) / \mathrm{HCl}$ (solution) $/ \mathrm{AgNO}_{3}$ (solution) $/ \mathrm{Ag}$
(C) $\mathrm{Pt} / \mathrm{H}_{2}(\mathrm{~g}) / \mathrm{HCl}$ (solution) $/ \mathrm{AgCl}(\mathrm{s}) / \mathrm{Ag}$
(D) $\mathrm{Pt} / \mathrm{H}_{2}(\mathrm{~g}) / \mathrm{KCl}$ (solution) $/ \mathrm{AgCl}(\mathrm{s}) / \mathrm{Ag}$

Solution :

Construction of galvanic cell.
Hence the answer is (C).
40.

$\mathrm{Ca}^{+} \xrightarrow{\text { Heat }}(\mathrm{A}) \xrightarrow[\text { (ii) } \mathrm{H}_{2} \mathrm{O}^{+}]{\text {(i) } \mathrm{LiAH}_{4}}(\mathrm{~B})+(\mathrm{C})$
What is major product B ?
(A)

(B)

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

(C)

(D)

Solution :

Hence the answer is (B).
41. A vessel contains $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ at 2 atm and 4 atm respectively at 1000 K and the mixture is allowed to attain equilibrium at 1000 K

$$
8 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightleftharpoons 8 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{8}(\mathrm{~s})
$$

At equilibrium, $\left(\frac{n_{H_{2}}}{n_{H_{2} \mathrm{~S}}}\right)_{\text {eqb }}=\left(\frac{n_{\mathrm{H}_{2} \mathrm{~S}}}{n_{\mathrm{H}_{2}}}\right)_{\text {initial }}$
What is the correct statement
(A) $\mathrm{Kp}=\mathrm{Kc}$ (RT)
(B) $\mathrm{Kc}=2.56$
(C) $\mathrm{Kp}=\mathrm{Kc}(\mathrm{RT})^{8}$
(D) $\mathrm{Kc}=256$

Solution :

$\left[\frac{\text { moles of } \mathrm{H}_{2} / \mathrm{V}}{\text { moles of } \mathrm{H}_{2} \mathrm{~S} / \mathrm{V}}\right]^{8}=\left(\frac{\mathrm{P}_{\mathrm{H}_{2}}}{\mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}}}\right)^{8}=2^{8}=256$

Hence the answer is (D).

42. In a solid $A B$ having fcc structure, A atom occupy the corners of the cubic unit cell. If all the face- centred atoms along one of the axis are removed, then the resultant stoichiometry of the solid is :
(A) AB_{2}
(B) $\mathrm{A}_{2} \mathrm{~B}$
(C) $\mathrm{A}_{4} \mathrm{~B}_{3}$
(D) $\mathrm{A}_{3} \mathrm{~B}_{4}$

Solution :

If we remove face-centred atom of one axis, two face atoms are removed.
Thus A is at 8 corners and B at 4 faces
$\mathrm{A}=\frac{8}{8}=1, \mathrm{~B}=\frac{4}{2}=2$
$\therefore \mathrm{AB}_{2}$
Hence the answer is (A).
43. Select correct statement for $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{SO}_{4}$ is
(A) Diamagnetic and $\mathrm{d}^{2} \mathrm{sp}^{3}$
(B) Diamagnetic and $=0$ B.M.
(C) Paramagentic and outer d - complex
(D) Paramagnetic and $\mu=\sqrt{8}$ B.M.

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

Solution :

$\mu=\sqrt{4(4+2)}=\sqrt{24}$ B.M.
Hence the answer is (C).
44. $\underset{\begin{array}{l}\text { Greenish } \\ \text { crystaline solid }\end{array}}{\mathrm{A}}+\mathrm{BaCl}_{2} \longrightarrow \underset{\begin{array}{c}\text { white ppt. } \\ \text { inso luble in }\end{array}}{\mathrm{B}}$
insoluble in HCl
$\mathrm{A} \xrightarrow{\Delta} \mathrm{H}_{2} \mathrm{O}+\mathrm{C}+\underset{\text { (Gas) }}{\mathrm{D}}+\underset{\text { (Gas) }}{\mathrm{E}}$
Identify B and D respectively
(A) $\mathrm{SO}_{2}, \mathrm{SO}_{3}$
(B) $\mathrm{BaSO}_{4}, \mathrm{Fe}_{2} \mathrm{O}_{3}$
(C) $\mathrm{BaSO}_{4}, \mathrm{SO}_{2}$
(D) $\mathrm{BaSO}_{4}, \mathrm{SO}_{3}$

Solution :

$\mathrm{A} \rightarrow \mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}, \mathrm{B} \rightarrow \mathrm{BaSO}_{4}, \mathrm{C} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{D} \rightarrow \mathrm{SO}_{2}, \mathrm{E} \rightarrow \mathrm{SO}_{3}$
Hence the answer is (B).
45.

(A)

(B)

(C)

(D)

Solution :

Trans is major product.
Hence the answer is (A).

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

Integer Type

46. An aqueous solution contains 10% ammonia by mass and has a density of $0.99 \mathrm{~g} / \mathrm{cm}^{3}$. What is the pH of this solution? (Ka for $\mathrm{NH}_{4}^{+}=5.0 \times 10^{-10} \mathrm{M}$)

Solution :

As given
$\frac{\text { mass of } \mathrm{NH}_{3}}{\text { mass of solution }}=\frac{10}{100}$
$\therefore \mathrm{M}\left(\mathrm{NH}_{3}\right)=\frac{10 \times 1000 \times 0.99}{100 \times 17}=5.82$
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NH}_{4} \mathrm{OH}$

	$\mathrm{NH}_{4} \mathrm{OH}$	$\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$	
$\mathrm{t}=0$	C	0	0
at eq			

$\left[\mathrm{OH}^{-}\right]=\mathrm{C} \alpha=\mathrm{C} \cdot \sqrt{\frac{\mathrm{K}_{\mathrm{b}}}{\mathrm{C}}}$
$\mathrm{K}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}=\frac{10^{-14}}{5 \times 10^{-10}}=2 \times 10^{-5}$
$\therefore\left[\mathrm{OH}^{-}\right]=\sqrt{2 \times 10^{-5} \times 5.82}=1.07 \times 10^{-2} \mathrm{M}$
$\therefore\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{1.07 \times 10^{-2}}=0.93 \times 10^{-12} \mathrm{M}$
pH = 12
Hence the answer is (12.0).
47. One mole of a mixture of CO and CO_{2} requires exactly 20 gm of NaOH in solution for complete conversion of all the CO_{2} into sodium carbonate. How much NaOH in grams would it require for conversion into $\mathrm{Na}_{2} \mathrm{CO}_{3}$, if the mixture (one mole) is completely oxidised to the CO_{2} ?

Solution :

$2 \mathrm{NaOH}+\mathrm{CO}_{2} \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\because \frac{1}{2} \times$ moles of NaOH used $=$ moles of CO_{2}
\therefore moles of CO_{2} in mixture $=\frac{1}{2} \times \frac{20}{40}=\frac{1}{4}$
Mole of CO in mixture $=1-\frac{1}{4}=\frac{3}{4}$
If this CO is completely oxidised to CO_{2} then moles of CO_{2} formed $=\frac{3}{4}$
Total moles of $\mathrm{CO}_{2}=\frac{1}{4}+\frac{3}{4}=1$
Moles of NaOH required $=2 \times$ moles of $\mathrm{CO}_{2}=2 \times 1=2$ moles
\therefore mass of NaOH required $=2 \times 40=80 \mathrm{gm}$
Hence the answer is (80).

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

48. A Zn rod weighing 25 g was kept in 100 ml of $1(\mathrm{M}) \mathrm{CuSO}_{4}$ solution. After a certain time the molarity of Cu^{2+} in solution was 0.8 . What was the mass of Zn rod in grams after cleaning? (At. Wt. of $\mathrm{Zn}=65.4$, $\mathrm{Cu}=60.0$)

Solution :

$\mathrm{Zn}+\mathrm{Cu}^{2+} \longrightarrow \mathrm{Zn}^{2+}+\mathrm{Cu}$
\because meq. $=\mathrm{N} \times \mathrm{V}(\mathrm{ml})$
meq. of Cu^{2+} lost $=$ meq. of Cu^{2+} before reaction - meq. of Cu^{2+} after reaction.

$$
=(1000 \times 1 \times 2)-(100 \times 0.8 \times 2)=40
$$

\therefore meq. of Cu^{2+} lost $=$ meq. of Zn lost $=40$
$\frac{W}{E} \times 1000=\frac{W}{65.4 / 2} \times 1000=40 \Rightarrow W=1.3 \mathrm{gm}$
\therefore Net mass of Zn rod $=25-1.3=23.7 \mathrm{gm}$
Hence the answer is (23.7).
49. For the hydrolysis of esters in alkaline medium rate expression is $-\frac{\mathrm{d}[\mathrm{ester}]}{\mathrm{dt}}=k$ [ester] [alkali] when excess alkali is used, then the overall order of the reaction is

Solution :

Hence the answer is (1).

50. Calculate the value of molal elevation constant for water in $\mathrm{K} / \mathrm{molality}$, if $\Delta \mathrm{S}$ for vaporization is 26.33 cal $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$ for water.

Solution :

$\mathrm{K}_{\mathrm{b}}=\frac{\mathrm{RT}_{\mathrm{b}} \cdot \mathrm{M}}{1000 \Delta \mathrm{~S}}, \Delta \mathrm{~S}=\frac{\Delta \mathrm{H}}{\mathrm{T}}$
$=\frac{2 \times 373 \times 18}{100 \times 26.33}=0.51$
Hence the answer is $\mathbf{(0 . 5 1)}$.

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

Dropper Batch

 MATHSANTS-FT-00
Engineering

51. A parabola $y=a x^{2}+b x+c$ crosses the
x-axis at $(\alpha, 0)$ and $(\beta, 0)$ both to the right of the origin. A circle also passes through these two points. The length of a tangent from the origin to the circle is
(A) $\sqrt{\frac{b c}{a}}$
(B) ac^{2}
(C) $\frac{\mathrm{b}}{\mathrm{a}}$
(D) $\sqrt{\frac{c}{a}}$

Solution :

Let $A(\alpha, 0)$ and $B(\beta, 0)$ be the two points

$$
\mathrm{OT}^{2}=\mathrm{OA} \cdot \mathrm{OB}=\alpha \beta=\frac{\mathrm{c}}{\mathrm{a}}
$$

Hence the answer is (D).
52. The value of $\lim _{x \rightarrow 0} \frac{\ln \left(1+\sin ^{3} x \cos ^{2} x\right) \cot \left(\ln ^{3}(1+x)\right) \tan ^{4} x}{\sin \left(\sqrt{x^{2}+2}-\sqrt{2}\right) \ln \left(1+x^{2}\right)}$
(A) 1
(B) $2 \sqrt{2}$
(C) $\frac{1}{2 \sqrt{2}}$
(D) $\sqrt{\frac{2}{3}}$

Solution :
Hence the answer is (B).
53. The solution of differential equation
$y y^{\prime \prime}-2 y^{\prime} \cdot y^{\prime}=0$, which passes through the point $x=1, y=1$
(A) $y=\frac{1}{A(x-1)+1}$
(B) $y=\frac{x}{-A(x-1)+1}$
(C) $y=\frac{1}{-A(x-1)+1}$
(D) none of these

Solution :

$\frac{y^{\prime \prime}}{y^{\prime}}=\frac{2 y^{\prime}}{y}$, on integrating, we get $\ln y^{\prime}=2 \ln y+c$ so $y^{\prime}=A y^{2}$
Again integration, we get $-\frac{1}{y}=A x+B$
Put $x=1, y=1 \Rightarrow \frac{1}{y}=-A(x-1)+1$
Hence the answer is (C).
54. In a regular hexagon $\mathrm{ABCDEF}, \overline{\mathrm{AE}}$ is equal to
(A) $\overline{\mathrm{AC}}+\overline{\mathrm{AF}}+\overline{\mathrm{AB}}$
(B) $\overline{\mathrm{AC}}+\overline{\mathrm{AF}}-\overline{\mathrm{AB}}$
(C) $\overline{\mathrm{AC}}+\overline{\mathrm{AB}}-\overline{\mathrm{AF}}$
(D) none of these

Solution :

$\overline{\mathrm{AE}}=\overline{\mathrm{AC}}+\overline{\mathrm{CD}}+\overline{\mathrm{DE}}=\mathrm{AC}+\mathrm{AF}-\mathrm{AB}$
$\because(\overline{\mathrm{DE}}=-\overline{\mathrm{AB}})$ and $(\overline{\mathrm{CD}}=\overline{\mathrm{AF}})$
Hence the answer is (B).

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

55. If \bar{a}, \bar{b} and \bar{c} are three non-coplanar vectors such that $\bar{a}+\bar{b}+\bar{c}=\alpha \bar{d}$ and $\bar{b}+\bar{c}+\bar{d}=\beta \bar{a}$, then $\bar{a}+\bar{b}+\bar{c}+\bar{d}$ is equal to
(A) 0
(B) $\alpha \bar{a}$
(C) $\beta \bar{b}$
(D) $(\alpha+\beta) \overline{\mathrm{c}}$

Solution :

$\because \overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}+\overline{\mathrm{d}}=(\alpha+1) \overline{\mathrm{d}}$ and $\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}+\overline{\mathrm{d}}=(\beta+1) \overline{\mathrm{a}}$
$\Rightarrow \bar{d}=\left(\frac{\beta+1}{\alpha+1}\right) \overline{\mathrm{a}}$ if $(\alpha \neq-1)$
$\Rightarrow\left(1-\frac{\alpha(\beta+1)}{\alpha+1}\right) \overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}=0$
Which is a contradiction
$\because \overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are non-coplanar
$\therefore \alpha=-1, \bar{a}+\bar{b}+\bar{c}+\bar{d}=0$
Hence the answer is (A).
56. If \bar{a}, \bar{b} and \bar{c} be 3 vectors having magnitude 1,1 and 2 respectively. If $\bar{a} \times(\bar{a} \times \bar{c})+\bar{b}=0$, the acute angle between \bar{a} and \bar{c} is
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) $\frac{5 \pi}{12}$

Solution :

$(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{a}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{a}}) \overline{\mathrm{c}}=-\overline{\mathrm{b}}$
$\Rightarrow(2 \cos \theta \overline{\mathrm{a}}-\overline{\mathrm{c}})^{2}=1(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=(1)(2) \cos \theta)$
$\Rightarrow \cos ^{2} \theta=\frac{3}{4}$
$\Rightarrow \theta=\frac{\pi}{6}$
Hence the answer is (A).
57. If \bar{a}, \bar{b} and \bar{c} are any 3 non zero vectors, then the component of $\bar{a} \times(\bar{b} \times \bar{c})$ perpendicular to \bar{b} is
(A) $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})+\left(\frac{(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot(\overline{\mathrm{c}} \times \overline{\mathrm{a}})}{|\mathrm{b}|^{2}}\right) \overline{\mathrm{b}}$
(B) $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})+\left(\frac{(\overline{\mathrm{a}} \times \overline{\mathrm{c}}) \cdot(\overline{\mathrm{a}} \times \overline{\mathrm{b}})}{|\mathrm{b}|^{2}}\right) \overline{\mathrm{b}}$
(C) $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})+\left(\frac{(\overline{\mathrm{b}} \times \overline{\mathrm{c}}) \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{a}})}{|\mathrm{b}|^{2}}\right) \overline{\mathrm{b}}$
(D) $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})+\left(\frac{(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})}{|\mathrm{b}|^{2}}\right) \overline{\mathrm{b}}$

Solution :

Component of $\bar{a} \times(\bar{b} \times \bar{c})$ along \bar{b} is $\left(\left(\frac{(\bar{a} \cdot \bar{c}) \overline{\mathrm{b}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{c}}}{|\mathrm{b}|^{2}}\right) \cdot \overline{\mathrm{b}}\right) \overline{\mathrm{b}}$
So component of $\bar{a} \times(\bar{b} \times \bar{c})$ perpendicular to \bar{b} is $\bar{a} \times(\bar{b} \times \bar{c})-\left(\frac{(\bar{a} \cdot \bar{b})(\bar{b} \cdot \bar{c})-(\bar{a} \cdot \bar{c})(\bar{b} \cdot \bar{b})}{|b|^{2}}\right) \bar{b}$
Hence the answer is (D).

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

58. If $\frac{2 \sin \alpha}{1+\sin \alpha+\cos \alpha}=\lambda$, then $\frac{1+\sin \alpha-\cos \alpha}{1+\sin \alpha}$ is
(A) $\frac{1}{\lambda}$
(B) λ
(C) $1-\lambda$
(D) $1+\lambda$

Solution :

$\frac{1+\sin \alpha-\cos \alpha}{1+\sin \alpha} \times \frac{(1+\sin \alpha+\cos \alpha)}{(1+\sin \alpha+\cos \alpha)}=\frac{2 \sin \alpha}{1+\sin \alpha+\cos \alpha}$

Hence the answer is (B).

59. Let n be an odd integer. If $\sin (n \theta)=\sum_{r=0}^{n} b_{r} \sin ^{r} \theta$ for all real θ, then
(A) $\mathrm{b}_{0}=1, \mathrm{~b}_{1}=4$
(B) $\mathrm{b}_{0}=-1, \mathrm{~b}_{1}=\mathrm{n}^{2}-4 \mathrm{n}+2$
(C) $\mathrm{b}_{0}=0, \mathrm{~b}_{1}=\mathrm{n}$
(D) $\mathrm{b}_{0}=0, \mathrm{~b}_{1}=\mathrm{n}^{2}-4 \mathrm{n}+2$

Solution :

$\sin (n \theta)=b_{0}+b_{1} \sin \theta+b_{2} \sin ^{2} \theta \ldots . b_{n} \sin ^{n} \theta$
Given n is an odd integer, put $\theta=0$ to get $\mathrm{b}_{0}=0$ and after differentiation w.r.t. θ, and putting $\theta=$ 0 , we get $b_{1}=n$
Hence the answer is (C).
60. If the area of a $\triangle \mathrm{ABC}$ be λ, then
$a^{2} \sin 2 B+b^{2} \sin 2 A$ is
(A) 2λ
(B) 3λ
(C) 4λ
(D) none of these

Solution :

$a^{2} \sin 2 B+b^{2} \sin 2 A=2 a^{2} \sin B \cos B+2 b^{2} \sin A \cos A$
$\left(\because \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{1}{2 R}\right)$
$\Rightarrow \frac{a b}{R}(a \cos B+b \cos A)=\frac{a b c}{R}=2 b c \sin A=4\left(\frac{1}{2} b c \sin A\right)=4 \lambda$
Hence the answer is (C).
61. The lengths of sides of a triangle are $a-b, a+b$ and $\sqrt{3 a^{2}+b^{2}}(a>b>0)$. The sine of its largest angle is
(A) $\frac{1}{2}$
(B) $-\frac{1}{2}$
(C) $\frac{\sqrt{3}}{2}$
(D) $-\frac{\sqrt{3}}{2}$

Solution :

Let $p=a-b, q=a+b, r=\sqrt{3 a^{2}+b^{2}}$
Greatest angle $\theta, \cos \theta=\frac{p^{2}+q^{2}-r^{2}}{2 p q}=-\frac{1}{2}, \theta=\frac{2 \pi}{3}$
$\Rightarrow \sin \theta=\frac{\sqrt{3}}{2}$
Hence the answer is (\mathbf{C}).
62. In a right angle triangle $A B C, D$ is a mid-point of hypotenuse $A B$ and E is the mid-point of $A C$. Segments BE and CD intersect at F . If $\mathrm{AC}=\sqrt{2}$ and $\mathrm{BC}=1$, then $\cos \angle \mathrm{BFC}$ is
(A) $\frac{1}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) $\frac{1}{\sqrt{2}}$
(D) none of these

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

Solution :

Slope of $C D=\frac{\frac{1}{2}}{\frac{1}{\sqrt{2}}}=\frac{1}{\sqrt{2}}$, slope of $B E=-\sqrt{2}$
$\Rightarrow C D \perp B E \Rightarrow \cos \angle B F C=0$
Hence the answer is (D).
63. A ray of light incident at the point $(-2,-1)$ get reflected from the tangent at $(0,-1)$ to the circle $x^{2}+y^{2}$ $=1$. The reflected ray touches the circle. The equation of the line along which the incident ray moves, is
(A) $4 x-3 y+11=0$
(B) $4 x+3 y+11=0$
(C) $3 x+4 y+11=0$
(D) $4 x+3 y+7=0$

Solution :

$\tan 2 \theta=\frac{2\left(\frac{1}{2}\right)}{1-\frac{1}{4}}=\frac{4}{3}$
Slope of $Q R=-\frac{4}{3}$
\Rightarrow Equation of incident ray $Q R$ is $3 y+4 x+11=0$

Hence the answer is (B).

64. A variable plane forms a tetrahedron constant volume $64 \mathrm{k}^{3}$ with the co-ordinate planes and the origin, then locus of the centroid of the tetrahedron is
(A) $x^{3}+y^{3}+z^{3}=6 k^{3}$
(B) $x y z=6 k^{3}$
(C) $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=4 \mathrm{k}^{2}$
(D) $\mathrm{x}^{-2}+\mathrm{y}^{-2}+\mathrm{z}^{-2}=4 \mathrm{k}^{-2}$

Solution :

$\frac{x_{1}}{4}=\mu, \frac{y_{1}}{4}=\gamma, \frac{z_{1}}{4}=\omega$
$\mathrm{x}_{1}=4 \mu, \mathrm{y}_{1}=4 \gamma, \mathrm{z}_{1}=4 \omega$
$v=\frac{1}{6}\left|\begin{array}{ccc}4 \mu & 0 & 0 \\ 0 & 4 \gamma & 0 \\ 0 & 0 & 4 \omega\end{array}\right|$
$\Rightarrow x y z=6 \mathrm{k}^{3}$

Hence the answer is (B).

65. The line $\frac{x-2}{2}=\frac{y+1}{2}=\frac{z-1}{-1}$ intersects the curve $x y=c^{2}$, in $x-y$ plane, if c is equal to
(A) ± 1
(B) $\pm \frac{1}{3}$
(C) ± 2
(D) none of these

Solution :

Put $z=0$ in the given line
$\Rightarrow x=4$ and $y=1$
Hence the answer is (C).

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

66. A circle of radius r passes through both foci of and exactly four points on, the ellipse with equation $x^{2}+16 y^{2}=16$. The set of all possible values of r is an interval $[a, b)$. What is $a+b$?
(A) $5 \sqrt{2}+4$
(B) $\sqrt{17}+7$
(C) $6 \sqrt{2}+3$
(D) $\sqrt{15}+8$

Solution :

>>>
Hence the answer is (D).
67. Maximum sum of coefficients in the expansion of $\left(1-x \sin \theta+x^{2}\right)^{n}$ is
(A) 1
(B) 2^{n}
(C) 3^{n}
(D) 0

Solution :

Put $\mathrm{x}=1$
$\Rightarrow(1-\sin \theta+1)^{n}$
So maximum value occurs when $\sin \theta=-1$, which is 3^{n}
Hence the answer is (C).
68. The value of $\int \frac{\cos ^{3} x+\cos ^{5} x}{\sin ^{2} x+\sin ^{4} x}$ is
(A) $\sin x-6 \tan ^{-1}(\sin x)+c$
(B) $\sin x-2(\sin x)^{-1}+c$
(C) $\sin x-2(\sin x)^{-1}-6 \tan ^{-1}(\sin x)+c$
(D) none of these

Solution :

$I=\int \frac{\left(\cos ^{2} x+\cos ^{4} x\right) \cdot \cos x d x}{\sin ^{2} x+\sin ^{4} x}=\int \frac{1-t^{2}+\left(1-t^{2}\right)^{2}}{t^{2}+t^{4}} d t$
$=\int \frac{\left(1-t^{2}\right)\left(2-t^{2}\right)}{t^{2}\left(1+t^{2}\right)} d t=2 \int \frac{2-t^{2}}{1+t^{2}} d t-\int \frac{\left(2-t^{2}\right)}{t^{2}} d t$
$=6 \int\left(\mathrm{t}^{2}-\frac{1}{1+\mathrm{t}^{2}}\right) \mathrm{dt}-4 \int \frac{\mathrm{dt}}{\mathrm{t}^{2}}+\int \mathrm{dt}=2 \int \frac{\mathrm{dt}}{\mathrm{t}^{2}}-6 \int \frac{\mathrm{dt}}{1+\mathrm{t}^{2}}+\int \mathrm{dt}$
$=\frac{-2}{t}-6 \tan ^{-1}(t)+t+c=\sin x-2(\sin x)^{-1}-6 \quad \tan ^{-1}(\sin x)+c$
Hence the answer is (C).
69. If $A=\int_{1}^{\sin \theta} \frac{t d t}{1+t^{2}}$ and $B=\int_{1}^{\operatorname{cosec} \theta} \frac{d t}{t\left(1+t^{2}\right)}$, then the value of $\left|\begin{array}{ccc}A & A^{2} & B \\ e^{A} e^{B} & B^{2} & -1 \\ 1 & A^{2}+B^{2} & -1\end{array}\right|$ is
(A) $\sin \theta$
(B) $\operatorname{cosec} \theta$
(C) 0
(D) 1

Solution :

$\mathrm{A}=\int_{1}^{\sin \theta} \frac{\mathrm{tdt}}{1+\mathrm{t}^{2}}$
Let $t=\frac{1}{x}, \quad d t=-\frac{1}{x^{2}} d x, \quad A=\int_{1}^{\operatorname{cossc} \theta} \frac{1}{x} \cdot \frac{-1}{x^{2}} \cdot \frac{d x}{\frac{x^{2}+1}{x^{2}}}=-\int_{1}^{\operatorname{cosec} \theta} \frac{d x}{x\left(1+x^{2}\right)}=-B$
$\therefore A+B=0$
$\Delta=\left|\begin{array}{ccc}A & A^{2} & B \\ e^{A+B} & B^{2} & -1 \\ 1 & A^{2}+B^{2} & -1\end{array}\right|=\left|\begin{array}{ccc}A & A^{2} & -A \\ 1 & A^{2} & -1 \\ 1 & 2 A^{2} & -1\end{array}\right|=0$
Hence the answer is (C).

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

70. If z is a complex number satisfying $|z|^{2}-|z| \quad 2<0$, then the value of $\left|z^{2}+z \sin \theta\right|$, for all values of θ, is
(A) equal to 4
(B) equal to 6
(C) more than 6
(D) less than 6

Solution :

$|z|^{2}-|z|-2<0$
$\Rightarrow(|z|-2) \quad(|z|+1)<0 \Rightarrow|z|<2$
Now $\left|z^{2}+z \sin \theta\right| \leq|z|^{2}+|z \sin \theta| \leq|z|^{2}+|z|<4+2=6$
Hence the answer is (D).

Integer Type

71. Let N be any four digit number say $x_{1} x_{2} x_{3} x_{4}$. Then maximum value of $\frac{N}{x_{1}+x_{2}+x_{3}+x_{4}}$ is equal to

Solution :

$\frac{N}{x_{1}+x_{2}+x_{3}+x_{4}}=\frac{1000 x_{1}+100 x_{2}+10 x_{3}+x_{4}}{x_{1}+x_{2}+x_{3}+x_{4}}=1000-\frac{\left(900 x_{2}+990 x_{3}+999 x_{4}\right)}{\left(x_{1}+x_{2}+x_{3}+x_{4}\right)}$
\Rightarrow Maximum value of $\frac{\mathrm{N}}{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}}=1000$
Hence the answer is (1000).
72. The maximum value of $f(x)=\frac{x^{4}-x^{2}}{x^{6}+2 x^{3}-1}, x>1$ is

Solution :

Hence the answer is (0.167).

73. Jerry starts at 0 on the real number line. He tosses a fair coin 8 times. When he gets heads, he moves 1 unit in the positive direction; when he gets tails, he moves 1 unit in the negative direction. The probability that he reaches 4 at some time during this process $\frac{a}{b}$, where a and b are relatively prime positive integers. What is $\mathrm{a}+\mathrm{b}$? (For example, he succeeds if his sequence of tosses is H T H H H H H H)

Solution :

For 6 to 8 heads, we are guaranteed to hit 4 heads, so the sum here is
$\binom{8}{2}+\binom{8}{1}+\binom{8}{0}=28+8+1=37$
For 4 heads, you have to hit the 4 heads at the start so there's only one way, 1.
For 5 heads, we either start of with 4 heads, which gives us $4 C 1=4$ ways to arrange the other flips, or we start off with five heads and one tail, which has 6 ways minus the 2 overlapping cases, HHHHHTTT and HHHHTHTT. Total ways 8.
Then we sum to get 46 . There are a total of $2^{8}=256$ possible sequences of 8 coin flips, so the probability is $\frac{46}{256}=\frac{23}{128}$. Summing, we get $23+128=151$
Hence the answer is (151).

ANTS-FT \# 21 (Engineering Dropper) (Solutions) - 2019-20

74. $f(x)+f\left(1-\frac{1}{x}\right)=1+x$ for $x \in R-\{0,1\}$. The value of $f(2)$ is equal to

Solution :

Let $\mathrm{y}=1-\frac{1}{\mathrm{x}}$
$f(y)+f\left(1-\frac{1}{y}\right)=f\left(1-\frac{1}{x}\right)+f\left(x-\frac{x}{x-1}\right)=f\left(1-\frac{1}{x}\right)+f\left(\frac{1}{1-x}\right)=2-\frac{1}{x}$
put $z=\frac{1}{1-x}$
$f(z)+f\left(1-\frac{1}{z}\right)=f\left(\frac{1}{1-x}\right)+f(x)=1+\frac{1}{1-x}$
subtract
$f(x)-f\left(1-\frac{1}{x}\right)=\frac{1}{1-x}+\frac{1}{x}-1$
$f(x)=\frac{1}{2}\left(\frac{1}{1-x}+\frac{1}{x}+x\right)$.

Alternate:

Putting $x=2, \frac{1}{2}$ and -1 successively
$f(2)+f(1 / 2)=3$
$f(1 / 2)+f(-1)=3 / 2$
and $f(-1)+f(2)=0$
Solving, we get $f(2)=3 / 4$.
Hence the answer is (0.75).
75. If $f: R \rightarrow R$ is a function satisfying the property $f(2 x+3)+f(2 x+7)=2, \forall x \in R$, then the period of $f(x)$ is

Solution :

$f(2 x+3)+f(2 x+7)=3$
Replace x by $x+1, f(2 x+5)+f(2 x+9)=2$
Now replace x by $x+2, f(2 x+7)+f(2 x+11)=2$
from (1) - (3) we get $f(2 x+3)-f(2 x+11)=0$
$f(2 x+3)=f(2 x+11) \Rightarrow T=4$.
Hence the answer is (4).

